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Abstract 

Purpose 

Multi-stage, ultra-endurance events in hot, humid conditions necessitate a-priori thermal 

adaptation, often achieved through heat acclimation (HA), to improve performance by reducing 

thermoregulatory strain and perceptions of heat stress. This study investigated the physiological, 

perceptual and immunological responses to short-term HA (STHA) in athletes preparing for the 

Marathon des Sables. 

Methods 

Eight ultra-endurance athletes (age; 42±4 yrs, mass; 81.9±15.0 kg and body fat; 17.6±5.9%) 

completed 4 days of controlled hyperthermia STHA (60 min·day-1, 45°C and 30% relative 

humidity). Pre, during and post sessions, physiological and perceptual measures were recorded. 

Immunological measures were recorded pre-post session 1 and 4.  

Results 

STHA improved peak thermal comfort (-1,P=0.02), sensation (-1,P=0.03) and perceived exertion (-

2,P=0.04). A dissociated relationship between perceptions of fatigue and Tre was evident after 

STHA, with reductions in perceived physical (-6,P=0.04) and general (-2,P=0.04) fatigue. 

Exercising Tre and HR did not change (P>0.05), however, sweat rate increased 14% (P=0.02). No 

changes were found in white blood cell counts or content (P>0.05).  

Conclusions 

Four days of STHA facilitates effective perceptual adaptations and lower feelings of fatigue, 

without compromising immune status prior to an ultra-endurance race in heat stress. A greater and 

prolonged physiological strain is required to confer optimal physiological adaptations. 
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Abbreviations 

∆   Change 

HA  Heat acclimation 

HR  Heart rate 

LTHA  Long term heat acclimation 

MdS  Marathon des Sables 

MFSI-SF  Multi-dimensional fatigue scale inventory-short form 

NBM  Nude body mass 

NUFL  Non-urine fluid loss 

PV  Plasma volume 

RPE  Rating of perceived exertion 

STHA  Short term heat acclimation  

TC  Thermal comfort 

TSS  Thermal sensation 

Tre  Rectal Temperature 

Uosm   Urine osmolality  

Usg  Urine specific gravity 

WBC  White blood cell  



Introduction 

Multi-stage, ultra-endurance events within extreme environmental conditions are increasing in 

popularity (Knoth et al., 2012). The annual Marathon des Sables (MdS), is a ~250 km multi-day 

race across the Sahara desert in Morocco, where competitors are self-dependent, carrying 5-10 kg 

of equipment in extreme heat stress (~40°C). Consequently, an array of challenges are experienced 

including; cumulative fatigue, dehydration, sleep deprivation, energy deficit (Costa et al., 2016), 

high solar heat loads with limited shade and, prolonged metabolic heat production. Such 

consequences exacerbate physiological and perceptual strain, augment the likelihood of 

dermatological injuries and gastrointestinal disorders (Gill et al., 2015; Costa et al., 2016), and 

increase the risk of exertional heat-related illnesses (EHI) (Coris et al., 2004), which can lead to 

race-withdrawal and emergency treatment (DeMartini et al., 2014). Therefore, to reduce the 

deleterious effects of heat stress it is imperative that athletes prepare effectively (Périard et al., 

2015; Racinais et al., 2015), however, a paucity of research describing effective and applied 

preparation strategies, specifically for ultra-marathons in heat stress exists. 

Heat acclimation (HA) is an intervention comprising 4-21 days of repeated, prolonged exposures to 

high ambient temperatures (>30°C) and moderate-high relative humidity (>40%) (Racinais et al., 

2015; Tyler et al., 2016). The numerous physiological advantages induced by HA have been 

discussed in detail elsewhere (Sawka et al., 2011; Garrett et al., 2014; Taylor, 2014; Racinais et al., 

2015). Short-term HA (STHA) can confer up to 75% of physiological adaptations typically seen 

following long-term HA (LTHA) (Pandolf, 1998), and appears effective across a range of 

populations (Costa et al., 2014; Garrett et al., 2014; Gibson et al., 2015a; Mee et al., 2015a; Neal et 

al., 2015; Willmott et al., 2016). Ultra-endurance athletes may benefit from STHA prior to 

competition (Costa et al., 2014), particularly when optimal controlled hyperthermia methods 

(Taylor, 2014; Racinais et al., 2015) are implemented, due to reduced training volume for equal 

physiological (Gibson et al., 2015a) and cellular adaptations (Gibson et al., 2015b). Beside 

physiological adaptations, perceived exertion is reduced (Neal et al., 2015), alongside improved 

thermal comfort (Costa et al., 2014), sensation (Gibson et al., 2015; Neal et al., 2015) and 

perceived fatigue (Tamm et al., 2015), although such improvements have not been found within 

ultra-endurance athletes during HA. This is of current interest, as ultra-marathon runners are highly 

motivated, display mental toughness and attain lower pain perceptions (Hoffman et al., 2014), thus, 

when fatigued decision making may be compromised leading to injury and, or illness (Maruff et al., 

2006).  



Improved perceptions of fatigue and temperature during exercise-heat stress may be beneficial for 

ultra-marathon performances in the absence of alterations in physiological markers, due to the 

impact each may have on pacing strategy within individual stages of an event (McCormick et al., 

2015). Moreover, when navigation and decision making are necessary, improved perception may 

be important in ameliorating the combined, and independent effects of heat stress, and exercise on 

cognitive markers (Taylor et al., 2016). However, minimal evidence regarding athletes preparing 

for ultra-endurance events exists (Costa et al., 2014) and it is unclear how the relationship between 

perceptual and physiological markers of heat adaptation change following STHA. 

While few studies have investigated the effects of HA on immune function, STHA (Guy et al., 

2016) and long term passive heat exposure (Kanikowska et al., 2012), report minor challenges to 

immune, inflammation and endotoxemia status (Walsh et al., 2011). This is in contrast to 

heightened inflammatory markers (Hailes et al., 2011) and disturbances in immune cell number and 

function after acute (Mitchell et al., 2002) and chronic (Hailes et al., 2011; Watt et al., 2016) 

moderate-intensity exercise-heat stress. Consequently, inflammation and leukocytosis occurs with 

an associated increase in circulating leukocyte cell counts, primarily caused by neutrophilia 

(Mestre-Alfaro et al., 2012). Such discrepancies are likely due to the exercise prescription, duration 

and physiological strain experienced as well as intervention efficacy. Predisposing factors 

including; ineffective preparation (i.e. unacclimated, low training status and high body fat) and a 

compromised immune status prior to competition (Walsh et al., 2011; Gill et al., 2015) may 

suppress anti-lipopolysaccharide (LPS) mechanisms, promote inflammatory and pyrogenic 

activities and increase the susceptibility to EHI (Lim & Mackinnon, 2006; Hailes et al., 2011; Guy 

et al., 2016). This will compromise the ecological validity of HA, should individuals experience 

immune dysfunction or other related illnesses (Costa et al., 2016), which have negative impacts 

upon health, heat tolerance and imminent exercise performance (Pyne et al., 2005). Therefore, 

monitoring biomarkers associated with immune function and overtraining, alongside tracking heat 

load, perceptual feedback and training intensity during intervention protocols is required (Guy et 

al., 2016). Consequently, the aim of this study was to investigate the physiological and perceptual 

markers of heat adaptation, and immune responses to STHA within a group of athletes preparing 

for a multi-day desert ultra-marathon. It was hypothesised STHA would induce heat adaptation 

without evidence of immune dysfunction.  



Methods  

Athletes 

Eight un-acclimated, male ultra-endurance runners (>150 km weekly) (age; 42 ± 4 years, body 

mass; 81.9 ± 15.0 kg, stature; 178 ± 8 cm, sum of 4 skin fold; 39.0 ± 14.7 mm and body fat; 17.6 ± 

5.9%) volunteered and provided written informed consent for the study, which was conducted in 

accordance with the Institution’s ethics and governance committee and Declaration of Helsinki 

(2013). Athletes had not experienced hot conditions (>25°C) for >3 months and abstained from 

caffeine, alcohol and strenuous activity for 24hrs prior to each session. Athletes also restricted food 

intake 2hrs prior to exercise, but maintained normal diet during the intervention. Athletes were 

instructed to arrive euhydrated (urine osmolality [Uosm] <700 mOsm·kg-1 and specific gravity [Usg] 

<1.030) (Sawka et al., 2007), or consumed 500mL of water over 30 mins before confirmation of 

hydration status prior to commencing exercise (n=1, session 1 and 4).  

Experimental design 

Each athlete visited the laboratory for 4 HA sessions 72hrs prior to starting the MdS. Prior to and 

post session 1 and 4, physiological and perceptual measures were recorded, blood samples were 

collected and the multidimensional fatigue symptom inventory-short form (MFSI-SF) questionnaire 

completed. 

Short term heat acclimation protocol 

HA was completed within hot, dry conditions (44.6 ± 1.4°C and 30 ± 6% relative humidity, wet-

bulb globe temperature [WBGT] 34°C), for 60 mins·day-1 for 4 days inside a purpose-built 

environmental chamber (WatFlow, TISS, UK), without fans or direct heat stimuli. HA session 1 

and 4 were prescribed and adjusted according to Gibson et al. (2016) for the use of a controlled 

hyperthermia method. Athletes cycled at 2 W·kg-1 to achieve a target Tre of 38.5ºC, where they then 

rested and, or cycled to maintain target temperature for the remainder of the session. Cycling was 

chosen as it is non-weight-bearing and practical, thus reducing injury risk during tapering and 

enabling 4-6 athletes to train simultaneously (Willmott et al., 2016). During sessions 2 and 3, 

athletes either cycled at 2 W·kg-1 or ran on the treadmill at a self-selected pace (6-10 km·hr-1) to 

reach and maintain target Tre. Treadmill exercise was prescribed to enable athletes to educate 

themselves on predicted race-pace, heart rate (HR) zones and estimated fluid losses, which was 

considered vital for their safe and successful preparations. Fluid ingestion was restricted during 



session 1 and 4 to estimate non-urine fluid loss (NUFL) accurately, while during sessions 2 and 3, 

athletes were permitted to practice drinking ad libitum to prepare for race conditions.   

Physiological measures and equipment 

On arrival to session 1, skinfold thickness was calculated using skinfold calipers (Harpenden, Baty 

International, UK) across four standard sites, which estimated body fat percentage (Durnin & 

Womersley, 1974). Stature and nude body mass (NBM) were measured using physician (Detecto 

Scale Company, USA) and weighing scales (Adam Equipment Co Ltd., UK), respectively. Urine 

samples determined hydration indices of Uosm (Pocket Pal-Osmo, Vitech Scientific, Ltd) and Usg 

(Atago Co., Refractometer, Japan). Tre was assessed using a single-use rectal probe (449H, Henleys 

Medical, UK), placed 10 cm past the anal sphincter, while HR was measured using monitors (Polar, 

Finland) affixed to the chest. Tre and HR were recorded at rest then at 5 min intervals during each 

session. Cycle ergometers (Monark 620 Ergomedic, Sweden) and a motorised treadmill (Woodway 

ELG2 GmbH) were used during exercise. NUFL was estimated by the difference in towel-dried 

NBM pre and post exercise, corrected for fluid intake and urine output. 

Perceptual measures  

Thermal comfort (TC, Zhang et al., 2004) from 0 (comfortable) to 5 (very uncomfortable), thermal 

sensation (TSS, Toner et al., 1986) from 0 (unbearably cold) to 8 (unbearably hot) and ratings of 

perceived exertion (RPE, Borg, 1982) from 6 (no exertion) to 20 (maximal exertion), were recorded 

at 5 min intervals. Perceptions of fatigue were measured using the MFSI-SF questionnaire (Stein et 

al., 2004) from 0 (not at all) to 4 (extremely), prior to and post sessions 1 and 4. These items load 

equally onto five fatigue subscales (General, Physical, Emotional, Mental, Vigour) and an overall 

Total Fatigue scale. 

Immunological measures 

Capillary blood samples were collected in 300 µl Lithium Heparin microvettes 10 mins pre and 

post HA sessions, while participants were sat upright. Whole blood samples were assessed using an 

automated haematology analyser (XT200i, Sysmex, UK). White blood cells (WBC) and WBC 

content (neutrophils, eosinophils, basophils, lymphocytes and monocytes) were measured and 

corrected for change in plasma volume (∆PV), which was estimated from haemoglobin and 

haematocrit (Dill & Costill, 1974). Capillary blood sample collection was chosen due to athlete 

preference, non-invasiveness, reduced discomfort and convenience, and itis a reliable and accurate 

method (Ponampalam et al., 2012). 



Statistical analyses  

All data are reported as mean ± standard deviation (SD), and were assessed for normality and 

sphericity prior to further statistical analyses using SPSS (IBM version 22.0). All physiological 

data pre-to-post session and between session 1 and 4 were analysed using dependent samples t-

tests. While all perceptual data were analysed using Wilcoxon signed rank tests. Peak measures 

were recorded at the end of each session, in addition to calculating the change in Tre (∆Tre) and time 

to target Tre. Relationships between perceptual and physiological measures were examined using 

Spearman’s Rho correlation coefficient (rs). Effect sizes were estimated and meaningful differences 

evaluated using Cohen’s d (Cohen, 1988). Statistical significance was accepted as P<0.05. A priori 

meaningful limits for physiological adaptations were ∆Tre >0.20°C, ∆HR >5 beats·min-1, ∆PV >5% 

and ∆NUFL >0.20 L·hr-1 (Willmott et al., 2015), >1 in scale scores for perceptual measures and 

fatigue scales, and >10% for immunological markers.   



Results 

Physiological measures 

There were no differences (P>0.05) in resting measures for hydration status, NBM, HR or Tre 

(Table 1). A meaningful reduction in HRpeak (-7 beats·min-1, t=1.72, P=0.13, d=0.8) was observed 

during session 4, alongside a significantly larger NUFL (+197 mL, t=3.22, P=0.01, d=0.7) and 

subsequent sweat rate (+0.2 L·hr-1, t=3.22 P=0.01, d=0.7) compared to session 1 (Table 1). Resting 

PV increased 3.5%, although exercising HR and Tre did not differ (P>0.05) between session 1 and 

4. Athletes were required to exercise for an additional ~4 min to reach target Tre during session 4. 

*****INSERT TABLE 1 HERE***** 

Perceptual measures 

A significantly (P<0.05) lower exercising mean and peak RPE, TSS and TC were observed during 

session 4 compared to session 1 (Table 2). General and Physical fatigue scales significantly 

increased pre to post session 1 (Z=2.03 and P=0.04, Z=2.05 and P=0.04, respectively), but not 

session 4 (Z=0.27 and P=0.89, Z=0.81 and P=0.41, respectively). No differences were observed in 

the other fatigue scales (P>0.05) (Table 2). 

*****INSERT TABLE 2 HERE***** 

Immunological measures 

Significant (P<0.05) pre-to-post changes in WBC, neutrophil, lymphocyte, eosinophil and basophil 

were observed during session 1 and 4 (Table 3). However, there were no differences in any 

immunological measures pre and post HA, between session 1 and 4. 

*****INSERT TABLE 3 HERE***** 

Marathon des Sables performance 

Seven out of the eight athletes completed the MdS in a mean time of 44:04:34 ± 9:58:42 

hr:min:sec. Finishing times ranged from 33:55:00 to 59:55:00 hr:min:sec, with three athlete’s final 

race positions in the top 8%. One athlete withdrew during stage 3 due to medical conditions 

(dermatological injury), yet none experienced EHI. Individual stage times (distance) were 6:32:06 

± 1:56:34 (34 km) 7:12:30 ± 1:53:32 (41.3 km), 6:42:46 ± 1:34:00 (37.5 km), 18:00:27 ± 4:29:42 

(84.3 km) and 6:30:26 ± 1:27:59 hr:min:sec (42.2 km). There were no correlations between total 

performance time, nor for each stage of the MdS and change in heat adaptation after STHA. 



Correlations 

Session 1 

Of the MFSI-SF scales where pre to post differences were observed, ∆General fatigue was found to 

correlate with Trepeak (rs=0.81, P=0.02) and RPE (rs=0.77, P=0.02). ∆Physical fatigue correlated 

with Trepeak (rs=0.84, P=0.01), ∆Tre (rs=0.72, P=0.05), body fat (rs=0.72, P=0.05) and RPE (rs=0.71, 

P=0.05). Following up on the significant differences in RPE, correlations were found between RPE 

and Trepeak (rs=0.85, P=0.01), and TSS (rs=0.77, P=0.03). RPEpeak also correlated with TSSpeak 

(rs=0.74, P=0.04), and between TSS and Trepeak (rs=0.72, P=0.04).  

Session 4 

The significant correlations found for ∆General and ∆Physical fatigue in session 1 were no longer 

significant, nor were additional correlations found in these scales. However, correlations were 

shown between RPE and Tre (rs=0.72, P=0.05), and between RPEpeak and NUFL (rs=0.85, P=0.01), 

TSS (rs=0.78, P=0.02) and TSSpeak (rs=0.86, P=0.01). 

  



Discussion 

The aim of the current study was to investigate the physiological, perceptual and immunological 

responses of a group of athletes completing STHA in preparation for the MdS. At a physiological 

level a lack of differences were found in typical markers of STHA (HR or Tre), yet sweat rate 

significantly increased and plasma volume expansion was observed. During STHA, significant 

improvements in perceptual markers of thermal comfort, sensation and perceived exertion towards 

exercise-heat stress were found. Moreover, a significant attenuation in perceived fatigue, in 

addition to a dissociation between perceptions of fatigue and Tre, were observed after STHA. No 

greater changes were observed in WBC count or content across the duration of STHA, thus 

suggesting maintained immune status and no detrimental effect of repeated exercise-heat stress.  

Perceptual responses 

During session 4, improved peak perceptual scores of TC (25%), TSS (14%), and RPE (17%) (all 

P<0.05 and d >1.0) were observed compared to session 1. Of notable interest, the improvements in 

exercising TC and TSS appear without concurrent reductions in Tre over the course of STHA. 

Positive relationships expectedly appeared between RPE and Tre, and TSS during session 1 and 4. 

However, during session 4, only RPE was correlated with fluid loss. Therefore, the reduction in 

RPE at the same fixed exercise intensity during session 4 is likely related to the improved comfort 

levels, contributed by superior sweat rate and expected lower skin temperature, as opposed to a 

reduced physiological strain (Flouris & Schlader, 2015). This is due to the prescribed 

environmental conditions during STHA, which were purposely uncomfortable and perceptually 

stressing in an attempt to improve perceptual sensitivity during the MdS. The differentiation in 

thermal perception during heat stress, where TSS which represents the relative intensity of the 

temperature being sensed (Attia, 1984) varies to TC, which reflects the subjective indifference with 

the environment (Mercer, 2001). These perceptual adaptations likely represent a reduced tendency 

to lower self-selected exercise intensity in the heat, and may sustain decision making and cognitive 

tasks during the race (Taylor et al., 2016). Therefore, highlighting the importance of behavioural 

thermoregulation during endurance performances in heat stress (Flouris & Schlader, 2015).  

Pre to post differences in General and Physical fatigue scales after session 1 (6 ± 7 and 3 ± 3, 

respectively) but not session 4 (0 ± 2 and 1 ± 2, respectively), indicate STHA was effective in 

reducing the degree of perceived fatigue in these dimensions. Additionally, the negative 

relationship between General and Physical fatigue, and Tre was no longer present after session 4. 

This result suggests STHA changes the way athletes’ perceive their physiological signals from Tre, 



as after repeated heat exposures Tre was no longer an indicator of perceived fatigue. This was in 

accordance with findings after LTHA (Tamm et al., 2015), indicating lowered feelings of fatigue 

and exertion, which are less effected by temperature modulation when individuals are heat 

acclimated. The positive relationship between RPE and fluid loss showed the opposite effect, 

whereby, during session 4 a positive relationship between RPEpeak and NUFL was found, in 

contrast to session 1. A novel finding of the current study and an intriguing interpretation of these 

data, is that there is a possible disassociation of signals from Tre with perception of General and 

Physical fatigue and an association of NUFL with RPE after STHA. This result is consistent with 

the sensory association hypothesis suggested by Watt et al. (2016), who showed a sensory 

association of Tre with chronic repeated heat exposure. However, this study extends their results by 

demonstrating for the first time, that heat exposure can result in sensory disassociation, possibly 

due to exercise-heat stress experience (Tamm et al., 2015), which can benefit athletes during their 

tapering for such ultra-endurance events, although, further research is required to confirm a HA or 

training effect. 

Immunological responses  

Immunological results remained within normal clinical levels throughout STHA and are in 

accordance with previous acute exercise-heat stress literature (Mitchell et al., 2002; McFarlin and 

Mitchell, 2003). Increased transient responses in WBC (25%), neutrophil (30%) and lymphocyte 

(18%) counts, were observed following session 1, which typically return to baseline within 24hrs 

(Kakanis et al., 2010). No differences were found compared to session 4, which displayed similar 

responses for WBC (17%), neutrophil (16%) and lymphocyte (22%) counts, due to maintenance of 

Tre during controlled hyperthermia. Nor were changes observed in resting measures over the course 

of STHA, suggesting a maintained immune status and no detrimental effect of repeated exercise-

heat stress prior to departing for the MdS. However, it is acknowledged that a more comprehensive 

overview of immune biomarkers should be assessed for clinical significance (Albers et al., 2005). 

The findings of this study are in line with Guy et al. (2016) who reported no effects on 

inflammatory markers, LPS or evidence of endotoxemia after STHA. Whereas, our results are in 

contrast to Hailes et al. (2011), who reported increased pro- and anti-inflammatory markers at rest 

after consecutive exercise-heat stress and a reduced response to a subsequent bout of heat-stress, 

thus suggesting unacclimated or lower trained individuals may be at an increased susceptibility to 

EHI if ineffectively prepared. Both the current study and Guy et al. (2016) are in accordance with 

the preparation recommendations by Pyne et al. (2014), which attempts to enhance exercise 

performance, while also improving thermotolerance and reducing the likelihood of endotoxin 



meditated EHI. Consequently, more emphasis on an athlete’s immune status is warranted, as 

increased physiological strain and possible insufficient recovery during LTHA may compromise 

athletes’ health and incur minor illnesses (Lim et al., 2009; Walsh et al., 2011), thus reducing 

training quality and impairing exercise performance (Tyler et al., 2016).  

Physiological responses 

Sweat rate significantly improved (+0.2 L·hr-1 [+14%]) after STHA, in line with similar studies 

(Gibson et al., 2015a; Mee et al., 2015a; Neal et al., 2015). While superior responses are expected 

after LTHA (Racinais et al., 2015), peripheral sudomotor adaptation observed in this study is 

contributed by hypervolemia (3.5%) and the magnitude of heat stress during our STHA protocol, as 

strong relationships are reported between sweat rate and environmental conditions (Tyler et al., 

2016). Moreover, as central adaptations (i.e. lower sweat setpoint) typically occur after LTHA and 

are concurrent with Tre reductions, a likely mechanism is the peripheral modulation of sweat gland 

output, which are associated with local skin temperature (Shibasaki et al., 2006). Therefore, the 

magnitude of heat stress during STHA provoked a greater sweat gland activity and output for 

effective fluid loss within the athletes, as opposed to the optimal elevated Tre required for central 

adaptations. This finding suggests athletes tapering for competition in hot conditions should either 

amplify ambient temperature or restrict heat evaporative loss during STHA, when preparation time 

for typical sudomotor adaptations is limited. 

Meaningful reductions in HRpeak were evident (-7 beats·min-1, d=0.8), although these did not 

significantly differ pre to post HA. However, evidence of improved acclimation state appeared as 

athletes were required to exercise for longer until reaching the target Tre during session 4 (+4 mins), 

as found within other STHA studies (Garrett et al., 2012; Gibson et al., 2015a; Mee et al., 2015a). 

A limited time (20-25 mins per session) was spent above 38.5°C, which may explain the lower 

mean ∆PV (+3.5%) and relatively limited cardiovascular and thermoregulatory adaptations (Sawka 

et al., 2011; Racinais et al., 2015), compared to other studies (Garrett et al., 2012; Tyler et al., 

2016).  

Limitations and future direction 

Regrettably, we were unable to perform pre or post heat acclimation state (Willmott et al., 2015), 

heat stress or maximal oxygen uptake tests, due to time constraints and athlete availability. 

Moreover, as a vast range of split times were observed for each stage of the event, tailored HA 

determined by prior aerobic capacity and heat acclimation state tests may be required for 

individuals or teams of similar physical characteristics competing in future multi-day endurance 



events in extreme conditions. Future applied research is required to investigate HA efficacy in 

trained athletes in order to confer total heat adaptation, as they appear partially acclimated and may 

require a longer and, or more intense HA protocol. However, if time is restricted and, or 

environmental chambers are inaccessible while preparing for athletic events in hot conditions, 

coaches may seek alternate methods that increase the magnitude of physiological strain to confer 

optimal adaptations. Such strategies include; higher intensity exercise prescription (Houmard et al., 

1990; Wingo, 2015), pre/post warm water immersion (Zurawlew et al., 2015; Ruddock et al., 

2016), larger magnitudes of heat stress and, or combined restrictive evaporative heat loss (i.e. sauna 

suits) (Mee et al., 2015b). It is also suggested consecutive or intermittent twice daily HA protocols 

(Willmott et al., 2016) may suit the athlete’s training commitments to sustain the quality of 

tapering. However, further investigations are required to fully assess the efficacy of these alternate 

methods of HA for optimal heat adaptation. 

Practical application 

The STHA protocol prescribed during this study, which was designed to maximise the magnitude 

of heat stress (34°C WBGT) to maintain target Tre (38.5°C) (Taylor, 2014) and reduce exercise 

intensity (Gibson et al., 2015a), is applicable to coaches and their athletes while tapering for 

endurance events within hot conditions. While accommodating the athlete’s time and duration 

restrictions, meaningful adaptations above predefined limits in sweat rate (14%) and plasma 

volume (3.5%) were observed within the 4 days prior to departure, without any decrement to health 

or expected HA decay as athletes began the MdS 72hrs later. Although STHA prepares individuals 

for competing in heat stress (Taylor, 2014), due to the multi-day ultra-endurance event, such 

physiological adaptations may not solely influence the likelihood of attaining an EHI or improve 

performance per se, due to the longevity of the race and numerous exogenous factors, unlike 

temperate, single-day events (i.e. marathon). Therefore, coaches and athletes from cooler 

conditions who cannot complete LTHA to optimally adapt to heat stress, may still benefit from this 

rapid STHA protocol to improve perceptual responses towards the heightened magnitude of heat 

stress, while also benefitting from key factors such as; educational awareness of Tre, pacing 

strategies, individual HR zones and sweat rates, equipment checks and improving confidence levels 

prior to departure.  

Conclusion 

In conclusion, this is the first study to adopt a controlled hyperthermia STHA protocol with athletes 

preparing for a multi-day desert marathon. The STHA protocol induced favourable improvements 



in perceptual adaptations of thermal comfort, thermal sensation and perceived exertional measures, 

as well as reducing the perceptions of fatigue. Although STHA did not confer full physiological 

heat adaptation, likely due to a sub-optimal strain, sweat rate was significantly improved owing to 

the high level of prescribed heat stress. Lastly, immune status was unaffected by repeated exercise-

heat stress, suggesting athletes remained in good health prior to departing for the multi-day ultra-

endurance event, while recognising their individual time constraints.  
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 Tables 

Table 1. Mean ± SD physiological responses at rest, during and post short term heat acclimation 

 

 

 Session 1 Session 4 ∆ 1 to 4 P (d) 



 

  

Rest 

NBM (kg) 81.6 ± 14.7 81.7 ± 15.2 0.1 ± 0.6 0.32 (0.0) 

HR (b·min-1) 59 ± 9 58  ± 4 -1 ± 7 0.29 (0.1) 

Tre (°C) 37.00 ± 0.37 36.98 ± 0.24 -0.02 ± 0.21 0.42 (0.1) 

Uosm (mOsm·kg-1) 580 ± 448 581 ± 303 1 ± 468 0.50 (0.0) 

Usg 1.022 ± 0.015 1.019 ± 0.009 -0.002 ± 0.015 0.39 (0.2) 

∆PV (%) 3.5 ± 2.8  

Exercise 

HR (b·min-1) 131 ± 9 127 ± 9 -4 ± 8 0.14 (0.4) 

HRpeak (b·min-1) 158 ± 17 151 ± 20 -7 ± 13 0.13† (0.8) 

Tre (°C) 38.32 ± 0.29 38.23 ± 0.23 -0.09 ± 0.31 0.22 (0.4) 

Trepeak (°C) 39.02 ± 0.36 38.92 ± 0.24 -0.10 ± 0.42 0.27 (0.3) 

∆Tre (°C) 2.02 ± 0.41 1.94 ± 0.29 -0.08 ± 0.41 0.30 (0.2) 

Time to 38.5°C (min:sec) 34:11 ± 7:43 38:11 ± 12:44 4:00 ± 11:44 0.18 (0.4) 

NUFL (mL) 1411 ± 594 1608 ± 626 197 ± 204 0.01* (0.7) 

Sweat rate (L·hr-1) 1.41 ± 0.59 1.61 ± 0.63 0.20 ± 0.20 0.01*† (0.7) 

Pre to post session 

Pre-post ∆PV (%) -1.8 ± 4.9 -2.4 ± 5.1  0.80 (0.1) 

*represents a significant difference (P≤0.05) and † a meaningful change between session 1 and 4. ∆ = 
change. 



Table 2. Mean ± SD perceptual responses at rest, during and after short term heat acclimation 

sessions 

  1	  Session 1 Session 4 ∆ 1 to 4 P (d) 

Rest 

TSS 5.5 ± 0.4 5.1 ± 0.6 -0.4 ± 0.6 0.11 (0.8) 

TC 3 ± 1 2 ± 1* -1 ± 1 0.05 (1.0) 

Exercise 

RPE 12 ± 2 10 ± 2* -2 ± 1 0.01 (1.0) 

RPEpeak 15 ± 1 13 ± 2* -2 ± 2 0.04 (1.3) 

TSS 5.7 ± 0.4 5.1 ± 0.6* -0.6 ± 0.5 0.04 (1.2) 

TSSpeak 6.5 ± 0.6 5.6 ± 1.0* -0.9 ± 0.7 0.03 (1.1) 

TC 3 ± 1 2 ± 1* -1 ± 1 0.02 (1.0) 

TCpeak 4 ± 1 3 ± 1* -1 ± 1 0.02 (1.0) 

Pre to post session 

MFSI-SF ∆Session 1 (P) ∆Session 4 (P) 

General 6 ± 7† (0.04) 0 ± 2* (0.89) 

Physical 3 ± 3† (0.04) 1 ± 2* (0.41) 

Emotional 0 ± 1 (0.74) -1 ± 1 (0.11) 

Mental 1 ± 1 (0.11) 0 ± 1 (1.00) 

Vigor -4 ± 6 (0.12) 1 ± 5 (0.85) 

Total 13 ± 15 (0.08) 0 ± 3 (0.85) 

*represents a significant difference (P≤0.05) between session 1 and 4, and † between 
(P≤0.05) pre and post session 1. ∆ = change, MFSI-SF = multidimensional fatigue 
symptom inventory-short form. 



Table 3. Mean ± SD immunological markers pre and post short term heat acclimation sessions. 2	

 3	

 4	

 Session 1 Session 4 ∆ 1 and 4 

 Pre Post ∆ (P, d) Pre Post ∆ (P, d) ∆Pre (p, d) ∆Post (P, d) ∆ P 

WBC 
(109·L-1) 

5.82 ± 1.84 6.98 ± 1.63* 
1.15 ± 1.16 
(0.04, 0.7) 

5.56 ± 1.93 6.63 ± 2.20* 
1.07 ± 0.85 
(0.01, 0.6) 

-0.26 ± 1.69 
(0.70, 0.1) 

-0.27 ± 2.01 
(0.76, 0.1) 

0.98 

Neutrophil 
(109·L-1) 

3.58 ± 1.66 4.43 ± 1.72* 
0.85 ± 0.85 
(0.00, 0.5) 

3.48 ± 1.51 4.11 ± 1.55* 
0.63 ± 0.53 
(0.00, 0.4) 

-0.11 ±  1.31 
(0.57, 0.1) 

-0.32 ±  1.42 
(0.58, 0.2) 

0.89 

Lymphocytes  
(109·L-1) 

1.59 ± 0.39 1.87 ± 0.50* 
0.28 ± 0.30 
(0.05, 0.6) 

1.49 ± 0.42 1.97 ± 0.63 * 
0.47 ± 0.33 
(0.01, 0.9) 

-0.10 ±  0.37 
(0.51, 0.2) 

0.10 ±  0.66 
(0.71, 0.2) 

0.34 

Monocytes  
(109·L-1) 

0.46 ± 0.13 0.51 ± 0.14 
0.05 ± 0.17 
(0.45, 0.4) 

0.43 ± 0.16 0.47 ± 0.13 
0.06 ± 0.10 
(0.16, 0.3) 

-0.02 ±  0.17 
(0.80, 0.2) 

-0.01 ±  0.25 
(0.92, 0.3) 

0.93 

Eosinophil 
(109·L-1) 

0.17 ± 0.07 0.13 ± 0.05* 
-0.04 ± 0.04 
(0.04, 0.7) 

0.13 ± 0.04 0.11 ± 0.05 
-0.01 ± 0.05 
(0.55, 0.4) 

-0.04 ±  0.05 
(0.05†, 0.7) 

0.02 ±  0.03 
(0.18, 0.4) 

0.27 

Basophil 
(109·L-1) 

0.027 ± 0.013 0.034 ± 0.011* 
0.007 ± 0.008 

(0.05, 0.0) 
0.024 ± 0.013 0.031 ± 0.015 

0.007 ± 0.010 
 (0.09, 0.6) 

-0.003 ±  0.018  
(0.69, 1.0) 

-0.003 ± 0.011  
(0.52, 0.0) 

1.00 

*represents a significant difference (P≤0.05) between pre and post, † between pre session 1 and 4. ∆ = change. 
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